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Abstract

Background: Protein residue-residue contact prediction is important for protein model generation and model
evaluation. Here we develop a conformation ensemble approach to improve residue-residue contact prediction.
We collect a number of structural models stemming from a variety of methods and implementations. The various
models capture slightly different conformations and contain complementary information which can be pooled
together to capture recurrent, and therefore more likely, residue-residue contacts.

Results: We applied our conformation ensemble approach to free modeling targets from both CASP8 and CASP9.
Given a diverse ensemble of models, the method is able to achieve accuracies of. 48 for the top L/5 medium
range contacts and. 36 for the top L/5 long range contacts for CASP8 targets (L being the target domain length).
When applied to targets from CASP9, the accuracies of the top L/5 medium and long range contact predictions
were. 34 and. 30 respectively.

Conclusions: When operating on a moderately diverse ensemble of models, the conformation ensemble approach
is an effective means to identify medium and long range residue-residue contacts. An immediate benefit of the
method is that when tied with a scoring scheme, it can be used to successfully rank models.

Background
Even after many years of intense attention and develop-
ment, de novo protein structure prediction remains a dif-
ficult and open problem. In part, this is due to the
inadequacy of current de novo sampling techniques
which are incapable of guiding the folding process
through such a vast conformational space [1-3]. To
address this issue, several have proposed the use of long
range contacts to reduce the size of the conformational
search space. Studies have shown that with as few as L/8
long-range contacts (L being the sequence length) pro-
teins can be folded and moderate resolution models gen-
erated [4,5]. Additional uses of protein residue-residue
contacts include applications such as model evaluation,
model selection and ranking [6-8], and drug design [9].
Given the importance and applicability of protein con-

tacts, considerable effort has been put forth to develop
methods which can predict protein residue-residue con-
tacts. The majority of these methods can be categorized

into three groups based on machine learning, templates
or correlated mutations. Machine learning approaches
make predictions by employing techniques such as neural
networks, support vector machines or hidden Markov
models trained on contacts from experimental structures
[10-16]. Template based methods rely on the detection of
similar structures (ie templates) by means of threading or
homology and once identified, extract contacts from the
templates as predictions [16-18]. Recently, more sophisti-
cated template based approaches have been developed
which attempt to combine contacts contained in differing
conformations among identified templates. This is done
by weighting the contacts contained within the templates
based on evolutionary distance between the templates
and target sequence [19]. Methods based on correlated
mutation identify correlated changes in residues as evi-
denced in multiple sequence alignments and then exploit
this information to predict residue-residue contacts
[20-24]. Both machine learning and correlated mutation
methods are considered ab-initio methods since no
structural template information is used. One additional
method which does not fall under the umbrella of the
three categories mentioned is the extraction of contacts
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from 3D structural models generated for a protein. This
approach has been used by the CASP assessors [25,26], a
few CASP predictors such as SMEG-CCP (see CASP8
abstracts), and in scoring protein models [8].
In spite of the effort and attention that contact predic-

tion has been given, the accuracy of long range contact
predictions still remains quite low for hard targets. For
these targets, accuracies typically range from 20 to 35%
depending on number of contacts considered, distance
thresholds and dataset [13,15,16]. Results from the eighth
and ninth Critical Assessment of Techniques for Protein
Structure Prediction (CASP) report that for free modeling
(ie hard) targets, the average accuracy for long range con-
tacts is routinely in the range of 20 to 25% [25,27].
Here we present a conformation ensemble approach for

contact prediction. The approach is partially motivated by
the view that while current protein structure predictions
methods infrequently capture the overall conformation of
hard targets, they do often capture portions of it. By pool-
ing together a number of models stemming from varying
alignments, templates, methods and implementations, it is
possible to create an ensemble of conformations which
represent portions of possible conformations for the tar-
get. The various models can capture slightly different con-
formations and contain complementary information
which can be pooled together to capture recurrent, and
therefore more likely, residue-residue contacts regardless
of the particular conformation. The method works by
extracting contacts from a large ensemble of possible
structures generated for a protein. When evaluating the
method on the CASP8 and CASP9 free modeling (FM)
targets, we find that it outperforms current approaches
substantially and achieves long range contact accuracies of
36% on the CASP8 FM targets and 30% on the CASP9
FM targets.

Methods
Datasets and Evaluation Metrics
The prediction targets used in our study were the protein
domains classified as free modeling (FM) targets for
CASP8 and CASP9. These are domains which did not
have structural templates or the templates existed but
were extremely difficult to detect [28]. For CASP8, the
target domains considered were the same used in the
official CASP8 assessment of contact predictors [25].
These domains included T0397 [1-82], T0405 [2-282],
T0416 [124-180], T0443 [31-96], T0443 [97-118,136-
173], T0460 [1-49,72-102], T0465[25-35,41-135], T0476
[2-88], T0482[5-10,19-31,35-46,49-76,96-103], T0496[4-
123], T0510[236-279] and T0513[17-85]. For CASP9, we
used all the domains classified as FM on the official
CASP9 website (http://predictioncenter.org/casp9/
domain_definitions.cgi). These domains included T0529
[7-339], T0531 [6-63], T0534 [31-80,257-384], T0534

[81-256], T0537 [65-350], T0537 [351-381], T0544 [1-
135], T0547 [343-421], T0547 [554-609], T0550 [178-
339], T0553 [3-65], T0553 [66-136], T0555 [12-145],
T0561 [1-109,112-161], T0571 [197-331], T0578 [9-
56,64-163], T0581 [27-131], T0604 [11-94], T0604 [292-
496], T0608 [29-117], T0618 [6-175], T0621 [2-170],
T0624 [5-73], T0629 [50-208], T0637 [1-135] and T0639
[3-126]. All the targets along with their corresponding
domain definitions and experimental structures are avail-
able on the CASP websites (http://predictioncenter.org/
casp8/, http://predictioncenter.org/casp9/). It should be
noted that the ensemble prediction approach could be
applied to hard template based modeling as well. In this
study we limited ourselves to the free modeling targets as
they are typically the type of target chosen when evaluat-
ing residue-residue contact prediction methods.
For the purposes of our investigation two amino acid

residues are said to be in contact if the distance between
their Cb atoms (Ca for glycine) in the experimental
structure is less than 8Å. Long range contacts are defined
as residues in contact whose separation in the sequence
is greater than or equal to 24 residues. Medium range
contacts are defined by interacting residues which are 12
to 23 residues apart in the sequence. These definitions
were used in accordance with previous studies [10,15,16]
and CASP residue-residue contact assessments
[25-27,29].
A common evaluation metric for residue-residue contact

predictions is the accuracy of the top L/5 or L/10 predic-
tions where L is the length of the protein in residues. If
evaluating predictions over a domain, L can also be the
length of the domain. Accuracy is defined as the number
of correctly predicted residue-residue contacts divided by
the total number of contact predictions considered. The
recall is defined as the number of correctly predicted resi-
due-residue contacts divided by the total number of true
contacts. Additionally, we also calculated the number of
contact predictions which were very close to a true con-
tact. For this calculation, a prediction is considered correct
if there is a true contact within ± δ residues for small
values (ie 1 or 2) of δ.

Conformation Ensemble Contact Prediction Procedure
The starting point for our conformation ensemble contact
predictor is a collection of structural models generated for
a protein. This collection of structural models we define as
the input ensemble. From each model in the input ensem-
ble, the residue-residue contacts are extracted and then
counted across all models. This list of contacts is then nor-
malized so that all counts are between 0 and 1 and sorted
according to frequency. At this point, the contacts can be
filtered (ie restricted to a domain) and the most commonly
occurring contacts are selected as the predicted contacts.
The entire procedure is depicted by Figure 1.
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The primary source of input ensembles was CASP.
During the most recent CASP experiments, prediction
groups were allowed to submit up to 5 tertiary structure
predictions per target to the prediction center. The models
for the groups which participated in the server category
are available on the CASP website and provided us with a
rich collection of ensembles for our prediction targets. On
average there were 301 models in each ensemble.

Results and Discussion
To establish an initial baseline for the effectiveness of our
conformation ensemble approach, we first evaluated it on
the free modeling targets from CASP8 and then tested it
blindly during CASP9 as the MULTICOM human resi-
due contact predictor. For the input ensemble, we used
the tertiary structure predictions submitted by predictors
in the server category. For each target domain, we calcu-
lated the precision (ie the percent of correct predictions)
of top L/5 medium and long range contacts. This is a
standard evaluation metric for contact predictors and has
been used in recent CASP experiments [25-27]. As an
additional evaluation metric, we calculated the precision
of the top L/5 predictions when compared to small
neighborhoods around true contacts. In this case, a pre-
diction is counted as correct if it ± δ residues (for small
δ) from a true contact. Tables 1 and 2 show the perfor-
mance of the conformation ensemble method on CASP8
and CASP9 free modeling targets. The precision of the

top L/5 predicted contacts on the CASP8 benchmark is
48% and 36% for medium and long range contacts
respectively, and 34% and 30% on the CASP9 benchmark.
If one or two residue shifting is allowed (δ = 1 or 2), the
precision of the L/5 medium range contacts ranges from
55% to 77% and long range contacts from 48% to 69%.
We also compared our conformation ensemble

approach with existing predictors of residue-residue con-
tacts and to contacts extracted from individual de novo
3D structure predictors. This assessment was conducted
on the CASP9 free modeling targets. For contact predic-
tors, we selected SVMcon [14] - a method which we
developed and one of the top contact predictors in
CASP9. It is worth noting that SVMcon (participating as
MULTICOM-RANK server) was also among the top

Figure 1 A conformation ensemble approach for residue-residue contact prediction. The starting point for our conformation ensemble
contact predictor is a collection of structural models. From each model in the ensemble, the residue-residue contacts are extracted and then
counted across all models. This list of contacts is then normalized and the most commonly occurring contacts are selected as the predicted
contacts.

Table 1 Precision and recall of conformation ensemble
contact predictions on CASP8 FM targets

Evaluation criteria Medium range contacts Long range contacts

Top L/5 .48(.18) .36(.08)

Top L/5, δ = 1 .70(.24) .61(.13)

Top L/5, δ = 2 .77(.26) .69(.14)

The performance of the conformation ensemble approach on the free
modelling (FM) targets from CASP8. The input ensembles were sets of server
submitted tertiary structure predictions for each FM target during CASP8. L is
the sequence length of each target domain. δ is the neighbourhood size in
residues. For δ = 1, a prediction is considered correct if a true contact occurs
within ± 1 residues of the prediction. The precision of the predictions is
shown first with the recall in parentheses.
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contact predictors in CASP8 [25]. To compare our
method with contacts extracted from specific tertiary
structure prediction methods, it was necessary to deter-
mine a ranking for the extracted contacts. This is because
only a portion of predicted contacts are evaluated (ie, top
L/5). To rank the contacts, we applied our ensemble
approach on the 5 models submitted by BAKER-ROSSE-
TASERVER and Zhang-Server during the CASP9 experi-
ment. This is to say that for each predictor, we took the 5
models submitted during the CASP experiment and used
these models as the input ensemble. Contacts were
extracted from models and ranked according to the pro-
cedure the same procedure as that outlined by Figure 1.
The results are summarized in Table 3. The results show
that the precision of the ensemble approach is ≥7%
higher than either a state-of-the-art sequence-based con-
tact predictor or the contacts extracted from models gen-
erated by the top de novo tertiary structure predictors.
This demonstrates that the ensemble-based contact pre-
diction very likely can be used to improve de novo struc-
ture modeling.
As the quality of the contact predictions depends on

the quality of the models in the ensemble, we reevaluated
our method on the CASP9 targets using filtered ensem-
bles. This allowed us to assess the method’s effectiveness
in coping with poor quality models and verify that the

method was not relying on a small number of good mod-
els to make quality predictions. Three filtering processes
were applied. In the first approach, we used ModelEva-
luator [7] to predict the quality of each model and then
removed those models from the ensemble whose pre-
dicted quality was below a set threshold. More specifi-
cally, we used the predicted GDT-TS value generated by
ModelEvaluator and if it was below 30, the model was
removed from the ensemble. We briefly mention here
that GDT-TS is a standard means of assessing a model’s
overall quality. It is calculated by performing a superim-
position of a model with the native structure and count-
ing the number of structurally equivalent pairs of Ca
atoms within given distance thresholds. Counts using dis-
tance thresholds of 1, 2, 4 and 8 Å are averaged and then
normalized by the number of residues in the model [30].
This process resulted in a modest increase in prediction
accuracy for long range contacts (see Table 4). In the sec-
ond approach, all of the models in the starting ensemble
were ranked by TM-Score [31] in comparison with the
experimental structures and the top 20 scoring models
were removed (see Table 4). As expected this resulted in
a decrease in performance. Still, even with the best mod-
els removed from the pool, the method performs compe-
titively with other contact prediction approaches. We
should note that a few of the targets were particularly
troublesome for the CASP9 predictors. For these targets,
several of the top ranked models had TM-Scores in the.
20 to. 30 range and at this level the TM-Score is not an
effective tool for accessing model quality. For these tar-
gets removing the top 20 scoring models may not have
significantly decreased the quality of the ensemble. The
third filtering approach involved creating an ensemble
which consisted only of the top 20 scoring models when
ranked by TM-Score in comparison with the experimen-
tal structures. The accuracy of long range contact predic-
tions stemming from these ensembles was notably higher
than that of the full, unfiltered ensembles but quite simi-
lar to the performance of the ensembles in which the
poor models had been filtered out.

Table 2 Precision and recall of conformation ensemble
contact predictions on CASP9 FM targets

Evaluation criteria Medium range contacts Long range contacts

Top L/5 .34 (.18) .30 (.05)

Top L/5, δ = 1 .55 (.27) .48 (.07)

Top L/5, δ = 2 .64 (.29) .56 (.08)

The performance of the conformation ensemble approach on the free
modelling (FM) targets from CASP9. The input ensembles were sets of server
submitted tertiary structure predictions for each FM target during CASP9. δ is
the neighbourhood size in residues. L is the sequence length of each target
domain. The precision of the predictions is shown first with the recall in
parentheses.

Table 3 Comparison of contact predictors on top L/5
predictions for CASP9 FM targets

Prediction Methods Medium range
contacts

Long range
contacts

Conformation ensemble .34 .30

SVMcon .19 .19

BAKER-ROSETTASERVER
ensemble

.27 .20

Zhang-Server ensemble .28 .23

The precision of predicted contacts obtained by various contact prediction
methods. For our conformation ensemble, we used sets of server submitted
tertiary structure predictions for each FM target during CASP9. SVMcon is a
machine learning, sequence based contact prediction methods. BAKER-
ROSETTASERVER ensemble and Zhang-Server ensemble were made by
applying the conformation ensemble approach to the structural predictions
made by each predictor during CASP9. L is the sequence length of each
target domain.

Table 4 Precision of top L/5 contact predictions obtained
from filtered ensembles on CASP9 FM targets

Filter type Medium range contacts Long range contacts

Remove-poor .34 .35

Remove-top .32 .25

Only-top .32 .37

The performance of the conformation ensemble approach when applied to
filtered ensembles. The input ensembles were filtered sets of server submitted
tertiary structure predictions for each FM target during CASP9. For Remove-
poor, ModelEvaluator was used and any model with a predicted GDT-TS score
of less than 30 was removed from an ensemble. For Remove-top, the top 20
models when ranked by TM-Score were removed from an ensemble. For
Only-top, the ensemble consisted of only the top 20 models when ranked by
TM-Score. L is the sequence length of each target domain.
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Given a diverse pool of models, the conformation
ensemble approach performs better than existing contact
prediction methods. The method is rather robust as well.
Removing poor quality models or the best models from
the starting ensembles does not significantly affect perfor-
mance. In this work we did not directly address the usabil-
ity of contacts predicted by our conformation ensemble
approach to aid in tertiary structure prediction. It is a mat-
ter which we hope to explore further in a future investiga-
tion. Nevertheless, we are optimistic that the contacts will
prove useful. This is due to the high accuracy of the con-
tact predictions when evaluating them in neighborhoods
of true contacts and also the clustered nature of the con-
tacts’ distribution. This is particularly true for short to
medium length proteins and Figure 2 depicts results
which are typical for such proteins. Their distribution and
location which respect to several long range interactions
indicate that they would be effective in reducing or con-
centrating the conformational search space which must be
explored during de novo structure prediction.
One application of our conformational ensemble

approach which we demonstrate here is its usability and
effectiveness in ranking models. It should be noted that
use of predicted contacts to rank and select models has
been studied previously and shown to be useful [6,8].
Motivated by these efforts, we developed our own scoring
scheme to rank models using contacts obtained by the
conformation ensemble approach. To rank models, we
used our conformational ensemble approach to generate
contacts for each FM target. We then scored the models
based on how well they satisfied the predicted top L med-
ium range contacts and all long range contacts. More spe-
cifically, we calculated the percentage of the predicted
medium range contacts satisfied exactly, the percentage of
predicted medium range contacts satisfied within 1 residue

(ie, δ = 1), the percentage of predicted long range contacts
satisfied exactly and the percentage of predicted long
range contacts satisfied within 1 residue. The sum of these
percentages was calculated and used to rank the models.
One measure of the effectiveness of a ranking scheme is

loss. The loss for a target is defined as the difference in
GDT-TS score [30,32,33] between the best model in the
group and the top ranked model. Table 5 shows the aver-
age loss per target for this simple ranking strategy based
on our conformational ensemble approach along with the
performances of two other ranking strategies and a ran-
dom baseline measure. MULTICOM (QA) is a consensus
based approach which ranks models using a combination
of quality assessment (QA) values from other QA predic-
tors. MULTICOM-CLUSTER (QA) is a pairwise model
comparison approach that uses the average structural
similarity between a model and all other models in the
pool as its predicted quality score for model ranking. Both
MULTICOM (QA) and MULTICOM-CLUSTER (QA)
were among the top QA predictors in CASP9 and the for-
mer was also among the top QA predictors in CASP8
[34]. For the random baseline measure, we ranked all
models by GDT-TS score and used the middlemost to cal-
culate the loss.
As indicated in Table 5, the model rankings based on

contacts obtained by our conformation ensemble
approach are indeed very competitive and on par with
those stemming from model quality assessment pro-
grams, which performed much better than the random
baseline approach. The simple scoring scheme we used
to rank models rewards those models which characterize
the residue-residue interactions which were most com-
mon across the ensemble. Thus, the ability to effectively
rank models using contacts obtained by our conforma-
tion ensemble approach indicates that the method is able
consolidate information about the protein’s overall struc-
ture across the models. Here, we also note that this rank-
ing strategy (ie, extracting contacts from models and
using them as a means to rank the models) could be
applicable to any protein structure prediction pipeline
which produces a large number of structures in the
course of making a 3D model.

Figure 2 Contact maps for CASP9 targets T0618 and T0624.
Visualized contact maps for (a) T0618 and (b) T0624. The lower
portion of each figure represents true long range contacts (colored
red) extracted from the experimental structure. The upper portion
shows the top L/5 predicted long range contacts obtained from the
conformation ensemble. The contacts cover several distinct regions
of long range interaction and show their proximity to true contacts.

Table 5 The average loss on CASP9 FM targets

Ranking Mechanism Avg. Loss (in GDT-TS
score)

Scoring w/conformation ensemble
contacts

0.07

MULTICOM (QA) 0.07

MULTICOM-CLUSTER (QA) 0.08

Random baseline measure 0.17

Models ranked by satisfaction of contacts predicted by conformation
ensemble approach. Random baseline measure is the loss of middlemost
model from a group when ranked by GDT-TS score.
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A principle advantage of this approach is its ability to
consolidate contact information across multiple models.
Target T0618 is an excellent example. Several of the
models submitted for target T0618 had misplaced some
of the helical bundles. By pooling all of the models
together into an ensemble and extracting the most com-
mon (ie, top) long range contacts, four key long range
interactions can be identified (Figure 3). To check that
these key contacts were not coming from a limited num-
ber of models but rather from the entire pool, we filtered
the ensemble of models for this target in a variety of
ways (eg, leave one predictor out, leave top 20 models
out, etc). In doing so, we did not see any dependency of
the key contacts to any one structural predictor or the
top ranked models. For instance, if we leave out all of the
models from QUARK [35] (ie, one of the most accurate
de novo tertiary structure predictors) all four key long
range interactions are still present in the predicted
contacts.

To further evaluate the method’s effectiveness in collect-
ing and consolidating contacts across an ensemble of
models, we clustered long range predicted contacts and
then calculated the coverage of these clusters by each
model in the ensemble. By doing so, we could determine if
the conformation ensemble approach was pulling together
more localized contacting clusters or if it was simply iden-
tifying a combination of interacting clusters which was
already quite prevalent and represented in the individual
models. To cluster predicted contacts, we grouped con-
tacts based on their separation in sequence. If two contacts
were within 4 residues in sequence they were placed in the
same cluster. After the clusters were formed, the predicted
contact closest to the average position (ie, index) in
sequence to all of the contacts in a cluster was selected as
the representative contact for the cluster. This list of
representative contacts was filtered and only those repre-
sentative contacts that were within 4 residues of a true
contact were retained. Then each model was checked and
the coverage of the clusters calculated. A cluster was con-
sidered covered if there was a contact in the model within
4 residues of the cluster’s representative contact. Table 6
summarizes the results of this evaluation for a number of
CASP9 FM targets. These results demonstrate the confor-
mation ensemble approach is capable pooling contact data
across the ensemble as the percentage of models that cov-
ers all or most of the contact clusters is low.
This ability to consolidate contact information across

multiple models is a concept that several protein structure
predictors could use as part of their own prediction pipe-
line. Clustering is widely used as a means to identify more
probable structures from a pool of models. However, with
clustering only similar models are capable of being clus-
tered and contribute information. With the conformation
ensemble approach, all models are able to contribute and
help identity likely residue-residue interactions. One could
easily envision an iterative approach in which a protein
structure predictor could generate a diverse set of models,
extract contact data and use it to generate more models.
This would allow information about the conformation
space to be passed from one round to the next via the
likely contacts extracted from the models.
A disadvantage of the method is its dependency on a

diverse ensemble of mildly accurate 3D models. In order
for the approach to work, the models generated need to
be able to capture at least some local portion of the overall
topology of the protein. If all of the models in the ensem-
ble are of poor quality then the method does not perform
very well.
An additional consideration which must be taken into

the account is the generation of the models. In practice,
one would need to generate a varied ensemble of models
before using the method. This could be done using a vari-
ety of protein structure prediction methods or variants of

Figure 3 Key long range interactions for T0618. Several tertiary
structure predictors had difficulty arranging the helical bundles for
this target. Our conformation ensemble approach correctly
predicted several key long range interactions for this target which
help pull the helical bundles together. The input ensemble was the
collection of server submitted models for T0618 during CASP9. The
long range interactions are 16-53 (red), 119-153 (green) and 83-116
and 27-116 (orange).
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a few approaches. The time and computing resources
needed to generate the models would depend on the
methods used to produce the models. These decisions
would affect the general practicality and usefulness of the
method as a general residue-residue contact predictor.
Yet, as we have demonstrated the method is applicable to
ensembles of smaller sizes and still generates relatively
accuracy predictions. The size of the ensemble and the
sources of the models are choices which must be made
when implementing a conformational ensemble predictor
and inevitably affect the time needed to make contact pre-
dictions, the accuracy of those predictions and the meth-
od’s ability to extract varied contact information across
the models.

Conclusions
In this work we have presented a conformation ensem-
ble approach for predicting protein residue-residue con-
tacts. The method draws contact data from an ensemble
of models which capture slightly different conformations
and contain complementary information. This informa-
tion can be pooled together to capture recurrent, and
therefore more likely, residue-residue contacts. We eval-
uated our approach on hard targets from CASP8 and
CASP9 and found that it is capable of achieving state of
the art performance for medium and long range resi-
due-residue contact prediction. We have also demon-
strated that the generated contact information coupled
with a simple scoring scheme is capable of effectively
ranking models.
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